Dynamic Resource Pricing and Allocation in Multilayer Satellite Network

The goal of delivering high-quality service has spurred research of 6G satellite communication networks. The limited resource-allocation problem has been addressed by next-generation satellite communication networks, especially multilayer networks with multiple low-Earth-orbit (LEO) and non-low-Eart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2021, Vol.69 (3), p.3619-3628
Hauptverfasser: Li, Yuan, Xie, Jiaxuan, Xia, Mu, Li, Qianqian, Li, Meng, Guo, Lei, Zhang, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of delivering high-quality service has spurred research of 6G satellite communication networks. The limited resource-allocation problem has been addressed by next-generation satellite communication networks, especially multilayer networks with multiple low-Earth-orbit (LEO) and non-low-Earth-orbit (NLEO) satellites. In this study, the resource-allocation problem of a multilayer satellite network consisting of one NLEO and multiple LEO satellites is solved. The NLEO satellite is the authorized user of spectrum resources and the LEO satellites are unauthorized users. The resource allocation and dynamic pricing problems are combined, and a dynamic game-based resource pricing and allocation model is proposed to maximize the market advantage of LEO satellites and reduce interference between LEO and NLEO satellites. In the proposed model, the resource price is formulated as the dynamic state of the LEO satellites, using the resource allocation strategy as the control variable. Based on the proposed dynamic game model, an open-loop Nash equilibrium is analyzed, and an algorithm is proposed for the resource pricing and allocation problem. Numerical simulations validate the model and algorithm.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2021.016187