Direct Monte Carlo simulation of development of the Richtmyer-Meshkov instability on the Ar/He interface

The Richtmyer-Meshkov instability developing on the interface between helium and argon gases hit by a propagating shock wave is simulated numerically. In contrast with conventional approach based on the Navier-Stokes equations, the simulation in the current paper is performed on the molecular level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-11, Vol.1404 (1), p.12109
Hauptverfasser: Kashkovsky, A V, Kudryavtsev, A N, Shershnev, A A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Richtmyer-Meshkov instability developing on the interface between helium and argon gases hit by a propagating shock wave is simulated numerically. In contrast with conventional approach based on the Navier-Stokes equations, the simulation in the current paper is performed on the molecular level using the Direct Simulation Monte Carlo method. The data averaging over short time periods is employed to decrease statistical scattering. The instability development is successfully reproduced with relatively moderate computer resources used. The time evolution of the transmitted shock wave and contact surface velocities are retrieved from numerical data as well as the instability growth rates.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1404/1/012109