Robust Control of Cooperative Adaptive Cruise Control in the Absence of Information About Preceding Vehicle Acceleration

Cooperative adaptive cruise control (CACC) has a potential to improve traffic throughput, fuel efficiency and vehicle safety. The CACC utilizes onboard sensors and a wireless communication to achieve vehicle stability and string stability of a platoon. The performance of CACC is degraded due to unre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-09, Vol.22 (9), p.5589-5598
Hauptverfasser: Sawant, Jaswandi, Chaskar, Uttam, Ginoya, Divyesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cooperative adaptive cruise control (CACC) has a potential to improve traffic throughput, fuel efficiency and vehicle safety. The CACC utilizes onboard sensors and a wireless communication to achieve vehicle stability and string stability of a platoon. The performance of CACC is degraded due to unreliable wireless communication and uncertain dynamics of the vehicle. In this paper, a disturbance observer based sliding mode control is proposed for the control of cooperative adaptive cruise control system. This scheme estimates the uncertainty present in the actuator dynamics and the acceleration of preceding vehicle as a lumped disturbance. The proposed strategy addresses practical issues such as unavailability of preceding vehicle acceleration and range of uncertainty in the vehicle dynamics. The stability of individual vehicles and the string stability of a platoon are derived. The performance of the proposed scheme is verified by considering various traffic scenarios, and it is compared with an existing method.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2020.2987984