Study of the thermal stability of structure and mechanical properties of submicrocrystalline aluminum alloys Al-2.5Mg-Sc-Zr
The paper provides the results of experimental studies of the microstructure, mechanical properties, and corrosion resistance of cast and submicrocrystalline (SMC) aluminum alloys Al-2.5Mg-Sc-Zr with different ratios of scandium and zirconium (Sc + Zr = 0.32 wt.%). SMC structure in alloys was formed...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-12, Vol.1347 (1), p.12058 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper provides the results of experimental studies of the microstructure, mechanical properties, and corrosion resistance of cast and submicrocrystalline (SMC) aluminum alloys Al-2.5Mg-Sc-Zr with different ratios of scandium and zirconium (Sc + Zr = 0.32 wt.%). SMC structure in alloys was formed by methods of severe plastic deformation: equal-channel angular pressing and rotary swaging. In our paper, we demonstrate that the alloys have high thermal stability - the recrystallization point in SMC alloys is 250-275 °C. We prove that the replacing scandium with zirconium leads to an increase in the thermal stability of the solid solution of scandium in cast and SMC aluminum alloys Al-Mg-Sc-Zr. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1347/1/012058 |