A new upper bound on the total domination number in graphs with minimum degree six
A total dominating set in a graph G is a set of vertices of G such that every vertex is adjacent to a vertex of the set. The total domination number γt(G) is the minimum cardinality of a dominating set in G. Thomassé and Yeo (2007) conjectured that if G is a graph on n vertices with minimum degree a...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2021-10, Vol.302, p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A total dominating set in a graph G is a set of vertices of G such that every vertex is adjacent to a vertex of the set. The total domination number γt(G) is the minimum cardinality of a dominating set in G. Thomassé and Yeo (2007) conjectured that if G is a graph on n vertices with minimum degree at least 5, then γt(G)≤411n. In this paper, it is shown that the Thomassé–Yeo conjecture holds with strict inequality if the minimum degree at least 6. More precisely, it is proven that if G is a graph of order n with δ(G)≥6, then γt(G)≤513814145n |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2021.05.033 |