Sum-full sets are not zero-sum-free
Let A be a finite, nonempty subset of an abelian group. We show that if every element of A is a sum of two other elements, then A has a nonempty zero-sum subset. That is, a (finite, nonempty) sum-full subset of an abelian group is not zero-sum-free.
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-09, Vol.625, p.241-247 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a finite, nonempty subset of an abelian group. We show that if every element of A is a sum of two other elements, then A has a nonempty zero-sum subset. That is, a (finite, nonempty) sum-full subset of an abelian group is not zero-sum-free. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2021.05.008 |