Sum-full sets are not zero-sum-free

Let A be a finite, nonempty subset of an abelian group. We show that if every element of A is a sum of two other elements, then A has a nonempty zero-sum subset. That is, a (finite, nonempty) sum-full subset of an abelian group is not zero-sum-free.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-09, Vol.625, p.241-247
Hauptverfasser: Lev, Vsevolod F., Nagy, János, Pach, Péter Pál
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a finite, nonempty subset of an abelian group. We show that if every element of A is a sum of two other elements, then A has a nonempty zero-sum subset. That is, a (finite, nonempty) sum-full subset of an abelian group is not zero-sum-free.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2021.05.008