Super (a, d)-H-antimagic total labeling of edge corona product on cycle with path graph and cycle with cycle graph

A simple graph G = (V(G), E(G)) admits a H-covering, where H is subgraph of G, if every edge in E(G) belongs to a subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijective function ξ:V(G)∪E(G)→{ 1,2,...,| V(G) |+| E(G) | }, such that for all subgraphs H' is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-08, Vol.1306 (1), p.12006
Hauptverfasser: Permata Sari, Arum, Sri Martini, Titin, Yugi Kurniawan, Vika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple graph G = (V(G), E(G)) admits a H-covering, where H is subgraph of G, if every edge in E(G) belongs to a subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijective function ξ:V(G)∪E(G)→{ 1,2,...,| V(G) |+| E(G) | }, such that for all subgraphs H' isomorphic to H, the H' weights w(H') = ∑v∈V(H') ξ(v) + ∑e∈E(H') ξ(e) constitute an arithmetic progression a, a + d, a + 2d, ..., a + (k - 1)d where a and d are positive integers and k is the number of subgraphs of G isomorphic to H. Such a labeling is called super if the smallest possible labels appear on the vertices. This research has found super (a, d)-H-antimagic total labeling of edge corona product of cycle and path denoted by Cm ◊ Pn with H is P2 ◊ Pn and super (a, d)-P2 ◊ Cn-antimagic total labeling of Cm ◊ Cn.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1306/1/012006