A hybrid artificial bee colony algorithm for balancing two-sided assembly line with assignment constraints

Two-sided assembly line balancing problem (TALBP) is a vital design problem for the industries. In real production process, some complex constraints should be considered in the two-sided assembly line. To solve the practical TALBP, this paper proposes a hybrid algorithm (HABC) that combines the arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-08, Vol.1303 (1), p.12145
Hauptverfasser: Xiong, Jing, Duan, Xiaokun, Wang, Erhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-sided assembly line balancing problem (TALBP) is a vital design problem for the industries. In real production process, some complex constraints should be considered in the two-sided assembly line. To solve the practical TALBP, this paper proposes a hybrid algorithm (HABC) that combines the artificial bee colony (ABC) algorithm and late acceptance hill-climbing (LAHC) algorithm. In the proposed algorithm, a well-designed decoding scheme is embedded to tackle multiple assignment constraints. Moreover, two neighborhood search strategies are implemented by employed bee and onlooker bee to explore and exploit the new solution. A set of computational experiments is performed on benchmark problems. The comparison results, best solutions, standard deviation and relative percentage index demonstrate that the HABC algorithm outperforms other algorithms published in the literature and finds 5 brand new solutions for 15 instances.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1303/1/012145