Linking dynamics and structure in highly asymmetric ionic liquids

We explore an idealized theoretical model for the transport of ions within highly asymmetric ionic liquid mixtures. A primitive model (PM)-inspired system serves as a representative for asymmetric ionic materials (such as liquid crystalline salts) which quench to form disordered, partially-arrested...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Farías-Anguiano, Mariana E, Cortés-Morales, Ernesto C, Whitmer, Jonathan K, Ramírez-González, Pedro E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore an idealized theoretical model for the transport of ions within highly asymmetric ionic liquid mixtures. A primitive model (PM)-inspired system serves as a representative for asymmetric ionic materials (such as liquid crystalline salts) which quench to form disordered, partially-arrested phases. Self-Consistent Generalized Langevin Equation (SCGLE) Theory is applied to understand the connection between the size ratio of charge-matched salts and their average mobility. Within this model, we identify novel glassy states where one of the two charged species (either the macro-cation or the micro-anion) are arrested, while the other retains mobility. We discuss how this result is useful in the development of novel single-ion conducting phases in ionic liquid based materials.
ISSN:2331-8422