Linking dynamics and structure in highly asymmetric ionic liquids
We explore an idealized theoretical model for the transport of ions within highly asymmetric ionic liquid mixtures. A primitive model (PM)-inspired system serves as a representative for asymmetric ionic materials (such as liquid crystalline salts) which quench to form disordered, partially-arrested...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore an idealized theoretical model for the transport of ions within highly asymmetric ionic liquid mixtures. A primitive model (PM)-inspired system serves as a representative for asymmetric ionic materials (such as liquid crystalline salts) which quench to form disordered, partially-arrested phases. Self-Consistent Generalized Langevin Equation (SCGLE) Theory is applied to understand the connection between the size ratio of charge-matched salts and their average mobility. Within this model, we identify novel glassy states where one of the two charged species (either the macro-cation or the micro-anion) are arrested, while the other retains mobility. We discuss how this result is useful in the development of novel single-ion conducting phases in ionic liquid based materials. |
---|---|
ISSN: | 2331-8422 |