On the Chromatic Vertex Stability Number of Graphs
The chromatic vertex (resp.\ edge) stability number \({\rm vs}_{\chi}(G)\) (resp.\ \({\rm es}_{\chi}(G)\)) of a graph \(G\) is the minimum number of vertices (resp.\ edges) whose deletion results in a graph \(H\) with \(\chi(H)=\chi(G)-1\). In the main result it is proved that if \(G\) is a graph wi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chromatic vertex (resp.\ edge) stability number \({\rm vs}_{\chi}(G)\) (resp.\ \({\rm es}_{\chi}(G)\)) of a graph \(G\) is the minimum number of vertices (resp.\ edges) whose deletion results in a graph \(H\) with \(\chi(H)=\chi(G)-1\). In the main result it is proved that if \(G\) is a graph with \(\chi(G) \in \{ \Delta(G), \Delta(G)+1 \}\), then \({\rm vs}_{\chi}(G) = {\rm ivs}_{\chi}(G)\), where \({\rm ivs}_{\chi}(G)\) is the independent chromatic vertex stability number. The result need not hold for graphs \(G\) with \(\chi(G) \le \frac{\Delta(G)+1}{2}\). It is proved that if \(\chi(G) > \frac{\Delta(G)}{2}+1\), then \({\rm vs}_{\chi}(G) = {\rm es}_{\chi}(G)\). A Nordhaus-Gaddum-type result on the chromatic vertex stability number is also given. |
---|---|
ISSN: | 2331-8422 |