Kombucha-derived bacterial cellulose from diverse wastes: a prudent leather alternative
This study focuses on the production of kombucha-derived bacterial cellulose (KBC) from different modified kombucha and diverse bio-waste sources using Komagataeibacter xylinus for high potential towards cost-effective industrial scalability. The various nutrient media for the biosynthesis of KBC we...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2021-09, Vol.28 (14), p.9335-9353 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focuses on the production of kombucha-derived bacterial cellulose (KBC) from different modified kombucha and diverse bio-waste sources using
Komagataeibacter xylinus
for high potential towards cost-effective industrial scalability. The various nutrient media for the biosynthesis of KBC were formulated with sour whey, apple juice, and brewer’s spent grains. Among the investigated nutrient sources, whey and whey/apple juice/brewer’s spent grains mixture media showed superiority in the production of KBC with final yield dry weight determined as 12.59 and 12.81 g/L, respectively. The obtained KBC membranes were characterized by FTIR, TGA, SEM, and XRD analysis and results showed no significant difference in chemical structure, morphology, and thermal stability. The obtained KBC membranes were then further applied in the fabrication of bio-based composites as prospective leather substitutes. The prepared bio-based composites showed good shape stability and considerable flexibility with an average tensile strength and elastic modulus of ∼1.69 MPa and ∼100 MPa, respectively. It can be inferred from the results in the present study that KBC can be used as a leather substitute in bio-textile fabrication.
Graphic abstract |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-021-04100-5 |