Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification

Feature selection is a key pre-processing technique for classification which aims at removing irrelevant or redundant features from a given dataset. Generally speaking, feature selection can be considered as a multi-objective optimization problem, i.e, removing number of features and improving the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-09, Vol.227, p.107218, Article 107218
Hauptverfasser: Xue, Yu, Zhu, Haokai, Liang, Jiayu, Słowik, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feature selection is a key pre-processing technique for classification which aims at removing irrelevant or redundant features from a given dataset. Generally speaking, feature selection can be considered as a multi-objective optimization problem, i.e, removing number of features and improving the classification accuracy. Genetic algorithms (GAs) have been widely used for feature selection problems. The crossover operator, as an important technique to search for new solutions in GAs, has a strong impact on the final optimization results. However, many crossover operators are problem-dependent and have different search abilities. Thus, it is a challenge to select the most efficient one to solve different feature selection problems, especially when the nature of feature selection problems is unknown in advance. In order to overcome this challenge, in this paper, a multi-objective binary genetic algorithm integrating an adaptive operator selection mechanism (MOBGA-AOS) is proposed. In MOBGA-AOS, five crossover operators with different search characteristics are used. Each of them is assigned a probability based on the performance in the evolution process. In different phases of evolution, the proper crossover operator is selected by roulette wheel selection according to the probabilities to produce new solutions for the next generation. The proposed algorithm is compared with five well-known evolutionary multi-objective algorithms on ten datasets. The experimental results reveal that MOBGA-AOS is capable of removing a large amount of features while ensuring a small classification error. Moreover, it obtains prominent advantages on large-scale datasets, which demonstrates that MOBGA-AOS is competent to solve high-dimensional feature selection problems.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2021.107218