Confusion Matrices and Rough Set Data Analysis

A widespread approach in machine learning to evaluate the quality of a classifier is to cross - classify predicted and actual decision classes in a confusion matrix, also called error matrix. A classification tool which does not assume distributional parameters but only information contained in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-05, Vol.1229 (1), p.12055
Hauptverfasser: Düntsch, Ivo, Gediga, Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A widespread approach in machine learning to evaluate the quality of a classifier is to cross - classify predicted and actual decision classes in a confusion matrix, also called error matrix. A classification tool which does not assume distributional parameters but only information contained in the data is based on rough set data model which assumes that knowledge is given only up to a certain granularity. Using this assumption and the technique of confusion matrices, we define various indices and classifiers based on rough confusion matrices.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1229/1/012055