Structure learning for relational logistic regression: an ensemble approach
We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and dev...
Gespeichert in:
Veröffentlicht in: | Data mining and knowledge discovery 2021-09, Vol.35 (5), p.2089-2111 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2111 |
---|---|
container_issue | 5 |
container_start_page | 2089 |
container_title | Data mining and knowledge discovery |
container_volume | 35 |
creator | Ramanan, Nandini Kunapuli, Gautam Khot, Tushar Fatemi, Bahare Kazemi, Seyed Mehran Poole, David Kersting, Kristian Natarajan, Sriraam |
description | We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR. |
doi_str_mv | 10.1007/s10618-021-00770-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566145733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566145733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bCO40e4oQoKohIHQOJmue46pEqTYicH_h5DkLhx2tfM7O4Qcs7hkgPoq8RBccOg4CyXGpg5IDMutWBaqrfDnAtTMmk4HJOTlLYAIAsBM_L4PMTRD2NE2qKLXdPVNPSRRmzd0PSda2nb100aGp97dcSUcveauo5il3C3bpG6_T72zr-fkqPg2oRnv3FOXu9uXxb3bPW0fFjcrJgXvBqYK7l3UEhfyaCC9xpQeq6dqIIvVBUMVrA2JQohzcYElcdo0ON6o9CooMWcXEy6ee3HiGmw236M-dRkC6kUL_PfIqOKCeVjn1LEYPex2bn4aTnYb9PsZJrNptkf06zJJDGRUgZ3NcY_6X9YX_oAcLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566145733</pqid></control><display><type>article</type><title>Structure learning for relational logistic regression: an ensemble approach</title><source>SpringerNature Journals</source><creator>Ramanan, Nandini ; Kunapuli, Gautam ; Khot, Tushar ; Fatemi, Bahare ; Kazemi, Seyed Mehran ; Poole, David ; Kersting, Kristian ; Natarajan, Sriraam</creator><creatorcontrib>Ramanan, Nandini ; Kunapuli, Gautam ; Khot, Tushar ; Fatemi, Bahare ; Kazemi, Seyed Mehran ; Poole, David ; Kersting, Kristian ; Natarajan, Sriraam</creatorcontrib><description>We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-021-00770-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Functionally gradient materials ; Information Storage and Retrieval ; Learning ; Logic programming ; Machine learning ; Physics ; Population ; Random variables ; Regression ; Standard data ; Statistical analysis ; Statistics for Engineering</subject><ispartof>Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.2089-2111</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</citedby><cites>FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</cites><orcidid>0000-0002-7364-7097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-021-00770-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-021-00770-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramanan, Nandini</creatorcontrib><creatorcontrib>Kunapuli, Gautam</creatorcontrib><creatorcontrib>Khot, Tushar</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kazemi, Seyed Mehran</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><creatorcontrib>Kersting, Kristian</creatorcontrib><creatorcontrib>Natarajan, Sriraam</creatorcontrib><title>Structure learning for relational logistic regression: an ensemble approach</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Functionally gradient materials</subject><subject>Information Storage and Retrieval</subject><subject>Learning</subject><subject>Logic programming</subject><subject>Machine learning</subject><subject>Physics</subject><subject>Population</subject><subject>Random variables</subject><subject>Regression</subject><subject>Standard data</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bCO40e4oQoKohIHQOJmue46pEqTYicH_h5DkLhx2tfM7O4Qcs7hkgPoq8RBccOg4CyXGpg5IDMutWBaqrfDnAtTMmk4HJOTlLYAIAsBM_L4PMTRD2NE2qKLXdPVNPSRRmzd0PSda2nb100aGp97dcSUcveauo5il3C3bpG6_T72zr-fkqPg2oRnv3FOXu9uXxb3bPW0fFjcrJgXvBqYK7l3UEhfyaCC9xpQeq6dqIIvVBUMVrA2JQohzcYElcdo0ON6o9CooMWcXEy6ee3HiGmw236M-dRkC6kUL_PfIqOKCeVjn1LEYPex2bn4aTnYb9PsZJrNptkf06zJJDGRUgZ3NcY_6X9YX_oAcLQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ramanan, Nandini</creator><creator>Kunapuli, Gautam</creator><creator>Khot, Tushar</creator><creator>Fatemi, Bahare</creator><creator>Kazemi, Seyed Mehran</creator><creator>Poole, David</creator><creator>Kersting, Kristian</creator><creator>Natarajan, Sriraam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7364-7097</orcidid></search><sort><creationdate>20210901</creationdate><title>Structure learning for relational logistic regression: an ensemble approach</title><author>Ramanan, Nandini ; Kunapuli, Gautam ; Khot, Tushar ; Fatemi, Bahare ; Kazemi, Seyed Mehran ; Poole, David ; Kersting, Kristian ; Natarajan, Sriraam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Functionally gradient materials</topic><topic>Information Storage and Retrieval</topic><topic>Learning</topic><topic>Logic programming</topic><topic>Machine learning</topic><topic>Physics</topic><topic>Population</topic><topic>Random variables</topic><topic>Regression</topic><topic>Standard data</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanan, Nandini</creatorcontrib><creatorcontrib>Kunapuli, Gautam</creatorcontrib><creatorcontrib>Khot, Tushar</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kazemi, Seyed Mehran</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><creatorcontrib>Kersting, Kristian</creatorcontrib><creatorcontrib>Natarajan, Sriraam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanan, Nandini</au><au>Kunapuli, Gautam</au><au>Khot, Tushar</au><au>Fatemi, Bahare</au><au>Kazemi, Seyed Mehran</au><au>Poole, David</au><au>Kersting, Kristian</au><au>Natarajan, Sriraam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure learning for relational logistic regression: an ensemble approach</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>2089</spage><epage>2111</epage><pages>2089-2111</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-021-00770-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7364-7097</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5810 |
ispartof | Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.2089-2111 |
issn | 1384-5810 1573-756X |
language | eng |
recordid | cdi_proquest_journals_2566145733 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Datasets Functionally gradient materials Information Storage and Retrieval Learning Logic programming Machine learning Physics Population Random variables Regression Standard data Statistical analysis Statistics for Engineering |
title | Structure learning for relational logistic regression: an ensemble approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20learning%20for%20relational%20logistic%20regression:%20an%20ensemble%20approach&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Ramanan,%20Nandini&rft.date=2021-09-01&rft.volume=35&rft.issue=5&rft.spage=2089&rft.epage=2111&rft.pages=2089-2111&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-021-00770-8&rft_dat=%3Cproquest_cross%3E2566145733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566145733&rft_id=info:pmid/&rfr_iscdi=true |