Structure learning for relational logistic regression: an ensemble approach

We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery 2021-09, Vol.35 (5), p.2089-2111
Hauptverfasser: Ramanan, Nandini, Kunapuli, Gautam, Khot, Tushar, Fatemi, Bahare, Kazemi, Seyed Mehran, Poole, David, Kersting, Kristian, Natarajan, Sriraam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2111
container_issue 5
container_start_page 2089
container_title Data mining and knowledge discovery
container_volume 35
creator Ramanan, Nandini
Kunapuli, Gautam
Khot, Tushar
Fatemi, Bahare
Kazemi, Seyed Mehran
Poole, David
Kersting, Kristian
Natarajan, Sriraam
description We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.
doi_str_mv 10.1007/s10618-021-00770-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566145733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566145733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bCO40e4oQoKohIHQOJmue46pEqTYicH_h5DkLhx2tfM7O4Qcs7hkgPoq8RBccOg4CyXGpg5IDMutWBaqrfDnAtTMmk4HJOTlLYAIAsBM_L4PMTRD2NE2qKLXdPVNPSRRmzd0PSda2nb100aGp97dcSUcveauo5il3C3bpG6_T72zr-fkqPg2oRnv3FOXu9uXxb3bPW0fFjcrJgXvBqYK7l3UEhfyaCC9xpQeq6dqIIvVBUMVrA2JQohzcYElcdo0ON6o9CooMWcXEy6ee3HiGmw236M-dRkC6kUL_PfIqOKCeVjn1LEYPex2bn4aTnYb9PsZJrNptkf06zJJDGRUgZ3NcY_6X9YX_oAcLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566145733</pqid></control><display><type>article</type><title>Structure learning for relational logistic regression: an ensemble approach</title><source>SpringerNature Journals</source><creator>Ramanan, Nandini ; Kunapuli, Gautam ; Khot, Tushar ; Fatemi, Bahare ; Kazemi, Seyed Mehran ; Poole, David ; Kersting, Kristian ; Natarajan, Sriraam</creator><creatorcontrib>Ramanan, Nandini ; Kunapuli, Gautam ; Khot, Tushar ; Fatemi, Bahare ; Kazemi, Seyed Mehran ; Poole, David ; Kersting, Kristian ; Natarajan, Sriraam</creatorcontrib><description>We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-021-00770-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Functionally gradient materials ; Information Storage and Retrieval ; Learning ; Logic programming ; Machine learning ; Physics ; Population ; Random variables ; Regression ; Standard data ; Statistical analysis ; Statistics for Engineering</subject><ispartof>Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.2089-2111</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</citedby><cites>FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</cites><orcidid>0000-0002-7364-7097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-021-00770-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-021-00770-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramanan, Nandini</creatorcontrib><creatorcontrib>Kunapuli, Gautam</creatorcontrib><creatorcontrib>Khot, Tushar</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kazemi, Seyed Mehran</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><creatorcontrib>Kersting, Kristian</creatorcontrib><creatorcontrib>Natarajan, Sriraam</creatorcontrib><title>Structure learning for relational logistic regression: an ensemble approach</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Functionally gradient materials</subject><subject>Information Storage and Retrieval</subject><subject>Learning</subject><subject>Logic programming</subject><subject>Machine learning</subject><subject>Physics</subject><subject>Population</subject><subject>Random variables</subject><subject>Regression</subject><subject>Standard data</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bCO40e4oQoKohIHQOJmue46pEqTYicH_h5DkLhx2tfM7O4Qcs7hkgPoq8RBccOg4CyXGpg5IDMutWBaqrfDnAtTMmk4HJOTlLYAIAsBM_L4PMTRD2NE2qKLXdPVNPSRRmzd0PSda2nb100aGp97dcSUcveauo5il3C3bpG6_T72zr-fkqPg2oRnv3FOXu9uXxb3bPW0fFjcrJgXvBqYK7l3UEhfyaCC9xpQeq6dqIIvVBUMVrA2JQohzcYElcdo0ON6o9CooMWcXEy6ee3HiGmw236M-dRkC6kUL_PfIqOKCeVjn1LEYPex2bn4aTnYb9PsZJrNptkf06zJJDGRUgZ3NcY_6X9YX_oAcLQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ramanan, Nandini</creator><creator>Kunapuli, Gautam</creator><creator>Khot, Tushar</creator><creator>Fatemi, Bahare</creator><creator>Kazemi, Seyed Mehran</creator><creator>Poole, David</creator><creator>Kersting, Kristian</creator><creator>Natarajan, Sriraam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7364-7097</orcidid></search><sort><creationdate>20210901</creationdate><title>Structure learning for relational logistic regression: an ensemble approach</title><author>Ramanan, Nandini ; Kunapuli, Gautam ; Khot, Tushar ; Fatemi, Bahare ; Kazemi, Seyed Mehran ; Poole, David ; Kersting, Kristian ; Natarajan, Sriraam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a41ca025c95f6fcc70e5c17a39fc269f8e90b84e3358d8f60e5e8ecebd6e86f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Functionally gradient materials</topic><topic>Information Storage and Retrieval</topic><topic>Learning</topic><topic>Logic programming</topic><topic>Machine learning</topic><topic>Physics</topic><topic>Population</topic><topic>Random variables</topic><topic>Regression</topic><topic>Standard data</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanan, Nandini</creatorcontrib><creatorcontrib>Kunapuli, Gautam</creatorcontrib><creatorcontrib>Khot, Tushar</creatorcontrib><creatorcontrib>Fatemi, Bahare</creatorcontrib><creatorcontrib>Kazemi, Seyed Mehran</creatorcontrib><creatorcontrib>Poole, David</creatorcontrib><creatorcontrib>Kersting, Kristian</creatorcontrib><creatorcontrib>Natarajan, Sriraam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanan, Nandini</au><au>Kunapuli, Gautam</au><au>Khot, Tushar</au><au>Fatemi, Bahare</au><au>Kazemi, Seyed Mehran</au><au>Poole, David</au><au>Kersting, Kristian</au><au>Natarajan, Sriraam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure learning for relational logistic regression: an ensemble approach</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>2089</spage><epage>2111</epage><pages>2089-2111</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-021-00770-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7364-7097</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1384-5810
ispartof Data mining and knowledge discovery, 2021-09, Vol.35 (5), p.2089-2111
issn 1384-5810
1573-756X
language eng
recordid cdi_proquest_journals_2566145733
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Datasets
Functionally gradient materials
Information Storage and Retrieval
Learning
Logic programming
Machine learning
Physics
Population
Random variables
Regression
Standard data
Statistical analysis
Statistics for Engineering
title Structure learning for relational logistic regression: an ensemble approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20learning%20for%20relational%20logistic%20regression:%20an%20ensemble%20approach&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Ramanan,%20Nandini&rft.date=2021-09-01&rft.volume=35&rft.issue=5&rft.spage=2089&rft.epage=2111&rft.pages=2089-2111&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-021-00770-8&rft_dat=%3Cproquest_cross%3E2566145733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566145733&rft_id=info:pmid/&rfr_iscdi=true