Structure learning for relational logistic regression: an ensemble approach

We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery 2021-09, Vol.35 (5), p.2089-2111
Hauptverfasser: Ramanan, Nandini, Kunapuli, Gautam, Khot, Tushar, Fatemi, Bahare, Kazemi, Seyed Mehran, Poole, David, Kersting, Kristian, Natarajan, Sriraam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of learning Relational Logistic Regression (RLR). Unlike standard logistic regression, the features of RLR are first-order formulae with associated weight vectors instead of scalar weights. We turn the problem of learning RLR to learning these vector-weighted formulae and develop a learning algorithm based on the recently successful functional-gradient boosting methods for probabilistic logic models. We derive the functional gradients and show how weights can be learned simultaneously in an efficient manner. Our empirical evaluation on standard data sets demonstrates the superiority of our approach over other methods for learning RLR.
ISSN:1384-5810
1573-756X
DOI:10.1007/s10618-021-00770-8