The positive integral points on the elliptic curve y 2 = (x + 4)(x 2 − 4x + 5)

In this paper, we studied the elliptic curve y 2 = ( x – a )( x 2 + ax + r ), a , r ∈ Z + in the case of a = 6, r = 7 which has no relevant conclusions up to now. And we obtained the conclusion of the integer points on Elliptic y 2 = ( x – 6)( x 2 + 6 x + 7 ), elliptic curve in title has only one in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-06, Vol.1213 (4), p.42008
Hauptverfasser: Xian-cun, DU, Zhao, Jianhong, Huizhang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we studied the elliptic curve y 2 = ( x – a )( x 2 + ax + r ), a , r ∈ Z + in the case of a = 6, r = 7 which has no relevant conclusions up to now. And we obtained the conclusion of the integer points on Elliptic y 2 = ( x – 6)( x 2 + 6 x + 7 ), elliptic curve in title has only one integer point ( x , y ) = (6,0) were proved with the help of the elementary methods such as congruence and Legendre symbol.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1213/4/042008