The defining properties of the Kontsevich unoriented graph complex

Consider the real vector space of formal sums of non-empty, finite unoriented graphs without multiple edges and loops. Let the vertices of graphs be unlabelled but let every graph γ be endowed with an ordered set of edges E(γ). Denote by Gra the vector space of formal sums of graphs modulo the relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-04, Vol.1194 (1), p.12095
Hauptverfasser: Rutten, Nina J, Kiselev, Arthemy V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the real vector space of formal sums of non-empty, finite unoriented graphs without multiple edges and loops. Let the vertices of graphs be unlabelled but let every graph γ be endowed with an ordered set of edges E(γ). Denote by Gra the vector space of formal sums of graphs modulo the relation (γ1, E(γ1)) − sign(σ)(γ2, E(γ2)) = 0 for topologically equal graphs γ1 and γ2 whose edge orderings differ by a permutation σ. The zero class in Gra is represented by sums of graphs that cancel via the above relation. The Lie bracket of graphs with ordered edge sets is defined using the insertion of a graph into vertices of the other one. We give an explicit proof of the theorems which state that the space Gra is a well-defined differential graded Lie algebra: both the Lie bracket [⋅, ⋅] and the vertex-expanding differential d = respect the calculus modulo zero graphs.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1194/1/012095