Equitable Vertex Arboricity Conjecture Holds for Graphs with Low Degeneracy

The equitable tree-coloring can formulate a structure decomposition problem on the communication network with some security considerations. Namely, an equitable tree- k -coloring of a graph is a vertex coloring using k distinct colors such that every color class induces a forest and the sizes of any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2021-08, Vol.37 (8), p.1293-1302
Hauptverfasser: Zhang, Xin, Niu, Bei, Li, Yan, Li, Bi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The equitable tree-coloring can formulate a structure decomposition problem on the communication network with some security considerations. Namely, an equitable tree- k -coloring of a graph is a vertex coloring using k distinct colors such that every color class induces a forest and the sizes of any two color classes differ by at most one. In this paper, we show some theoretical results on the equitable tree-coloring of graphs by proving that every d -degenerate graph with maximum degree at most Δ is equitably tree- k -colorable for every integer k ≥ (Δ + 1)/2 provided that Δ ≥ 9.818 d , confirming the equitable vertex arboricity conjecture for graphs with low degeneracy.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-021-0663-4