Equitable Vertex Arboricity Conjecture Holds for Graphs with Low Degeneracy
The equitable tree-coloring can formulate a structure decomposition problem on the communication network with some security considerations. Namely, an equitable tree- k -coloring of a graph is a vertex coloring using k distinct colors such that every color class induces a forest and the sizes of any...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2021-08, Vol.37 (8), p.1293-1302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The equitable tree-coloring can formulate a structure decomposition problem on the communication network with some security considerations. Namely, an equitable tree-
k
-coloring of a graph is a vertex coloring using
k
distinct colors such that every color class induces a forest and the sizes of any two color classes differ by at most one. In this paper, we show some theoretical results on the equitable tree-coloring of graphs by proving that every
d
-degenerate graph with maximum degree at most Δ is equitably tree-
k
-colorable for every integer
k
≥ (Δ + 1)/2 provided that Δ ≥ 9.818
d
, confirming the equitable vertex arboricity conjecture for graphs with low degeneracy. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-021-0663-4 |