Light‐Driven Self‐Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure

Developing self‐oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently‐bridged black phosphorus‐carbon nanotubes heterostru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2021-09, Vol.133 (37), p.20674-20680
Hauptverfasser: Hu, Ying, Ji, Qixiao, Huang, Majing, Chang, Longfei, Zhang, Chengchu, Wu, Guan, Zi, Bin, Bao, Ningzhong, Chen, Wei, Wu, Yucheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing self‐oscillating soft actuators that enable autonomous, continuous, and directional locomotion is significant in biomimetic soft robotics fields, but remains great challenging. Here, an untethered soft photoactuators based on covalently‐bridged black phosphorus‐carbon nanotubes heterostructure with self‐oscillation and phototactic locomotion under constant light irradiation is designed. Owing to the good photothermal effect of black phosphorus heterostructure and thermal deformation of the actuator components, the new actuator assembled by heterostructured black phosphorus, polymer and paper produces light‐driven reversible deformation with fast and large response. By using this actuator as mechanical power and designing a robot configuration with self‐feedback loop to generate self‐oscillation, an inchworm‐like actuator that can crawl autonomously towards the light source is constructed. Moreover, due to the anisotropy and tailorability of the actuator, an artificial crab robot that can simulate the sideways locomotion of crabs and simultaneously change color under light irradiation is also realized. A new type of photoactuator based on a heterostructured black phosphorus (BP)‐carbon nanotube (CNT) hybrid presents high‐performance light‐driven reversible actuation. By using the BP‐based actuator as the working unit, together with the self‐oscillating configuration and asymmetric structure design, an inchworm‐like soft actuator that can crawl autonomously towards the light source is constructed.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202108058