Low Cost Activated Carbon for Removal of NOM and DBPs: Optimization and Comparison

Higher concentrations of disinfection byproducts (DBPs) in small water systems have been a challenge. Adsorption by tailored activated carbon (AC), developed from waste materials of a pulp and paper company using optimization of chemical activation by nitric acid followed by physical activation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-08, Vol.13 (16), p.2244
Hauptverfasser: Tafvizi, Hoda, Chowdhury, Shakhawat, Husain, Tahir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher concentrations of disinfection byproducts (DBPs) in small water systems have been a challenge. Adsorption by tailored activated carbon (AC), developed from waste materials of a pulp and paper company using optimization of chemical activation by nitric acid followed by physical activation and metal coating, was tested for the removal of natural organic matter from water using synthetic and natural water. AC was coated with aluminum and iron salts in a ratio of 0.25 to 10.0% of metal: AC (wt:wt%). The optimization of dosage, pH, and time was performed to achieve the highest adsorption capacity. The modified AC of 0.75% Fe-AC and 1.0% Al-AC showed 35–44% improvement in DOC removal from natural water. An enhancement of 40.7% in THMs removal and 77.1% in HAAs removal, compared to non-modified, AC were achieved. The pseudo-second order was the best fitted kinetic model for DOC removal, representing a physiochemical mechanism of adsorption.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13162244