Quantum Current Algebra Symmetry and Description of Boltzmann Type Kinetic Equations in Statistical Physics
We review a non-relativistic current algebra symmetry approach to constructing the Bogolubov generating functional of many-particle distribution functions and apply it to description of invariantly reduced Hamiltonian systems of the Boltzmann type kinetic equations, related to naturally imposed cons...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021, Vol.13 (8), p.1452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We review a non-relativistic current algebra symmetry approach to constructing the Bogolubov generating functional of many-particle distribution functions and apply it to description of invariantly reduced Hamiltonian systems of the Boltzmann type kinetic equations, related to naturally imposed constraints on many-particle correlation functions. As an interesting example of deriving Vlasov type kinetic equations, we considered a quantum-mechanical model of spinless particles with delta-type interaction, having applications for describing so called Benney-type hydrodynamical praticle flows. We also review new results on a special class of dynamical systems of Boltzmann–Bogolubov and Boltzmann–Vlasov type on infinite dimensional functional manifolds modeling kinetic processes in many-particle media. Based on algebraic properties of the canonical quantum symmetry current algebra and its functional representations, we succeeded in dual analysis of the infinite Bogolubov hierarchy of many-particle distribution functions and their Hamiltonian structure. Moreover, we proposed a new approach to invariant reduction of the Bogolubov hierarchy on a suitably chosen correlation function constraint and deduction of the related modified Boltzmann–Bogolubov kinetic equations on a finite set of multi-particle distribution functions. There are also presented results of application of devised methods to describing kinetic properties of a many-particle system with an adsorbent surface, in particular, the corresponding kinetic equation for the occupation density distribution function is derived. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13081452 |