Effect of Moving Structure on the Spatial Accuracy and Compensation of the Coordinate Measuring Machine
The coordinate measuring machine (CMM) is one of the most widely used precision measurement machines in the machinery industry. In this study, the analysis and compensation of structural deformation in spatial coordinates effectively depicts the improvement of the spatial accuracy of the motion of a...
Gespeichert in:
Veröffentlicht in: | International journal of precision engineering and manufacturing 2021-09, Vol.22 (9), p.1551-1561 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coordinate measuring machine (CMM) is one of the most widely used precision measurement machines in the machinery industry. In this study, the analysis and compensation of structural deformation in spatial coordinates effectively depicts the improvement of the spatial accuracy of the motion of a three-dimensional measuring machine in a measurement area. In addition to accuracy, it is also projected that the measurement can be carried out more efficiently. Therefore, the measurement speed of the CMM and dynamic characteristics of the structure are becoming increasingly important. Consequently, the measuring machine has better dynamic characteristics and meets high precision requirements. During measurement, the geometric errors generated by the machine are mainly because of its moving structure in the spatial position. In this study, the CMM is driven by aerostatic bearings; the boundary conditions and parameter settings of each component are established to obtain analysis results that are highly consistent with the actual machine characteristics. The finite element method is used as an analysis tool, including static deformation, modal, spectrum, and transient analyses. Because of the structural deformation and spatial geometric errors caused by the moving structure of the measuring machine, the relative deformation errors can be evaluated through the analysis of the spatial position error compensation to improve the measurement accuracy of the machine. |
---|---|
ISSN: | 2234-7593 2005-4602 |
DOI: | 10.1007/s12541-021-00560-8 |