Multi-Tier 3D IC Physical Design with Analytical Quadratic Partitioning Algorithm Using 2D P&R Tool
In this study, we developed a complete flow for the design of monolithic 3D ICs. We have taken the register-transfer level netlist of a circuit as the input and synthesized it to construct the gate-level netlist. Next, we partitioned the circuit using custom-made partitioning algorithms and implemen...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-08, Vol.10 (16), p.1930 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we developed a complete flow for the design of monolithic 3D ICs. We have taken the register-transfer level netlist of a circuit as the input and synthesized it to construct the gate-level netlist. Next, we partitioned the circuit using custom-made partitioning algorithms and implemented the place and route flow of the entire 3D IC by repurposing 2D electronic design automation tools. We implemented two different partitioning algorithms, namely the min-cut and the analytical quadratic (AQ) algorithms, to assign the cells in different tiers. We applied our flow on three different benchmark circuits and compared the total power dissipation of the 3D designs with their 2D counterparts. We also compared our results with that of similar works and obtained significantly better performance. Our two-tier 3D flow with AQ partitioner obtained 37.69%, 35.06%, and 12.15% power reduction compared to its 2D counterparts on the advanced encryption standard, floating-point unit, and fast Fourier transform benchmark circuits, respectively. Finally, we analyzed the type of circuits that are more applicable for a 3D layout and the impact of increasing the number of tiers of the 3D design on total power dissipation. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10161930 |