The Influence of Meteorological Parameters and Other Factors on Soil Radon Dynamics
The paper presents the results of the research in the degree of the effect of space weather meteorological parameters and factors on the dynamics of soil radon levels and α- and β-radiation flux densities in a seismically passive region. The cross-correlation analysis showed a significant correlatio...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2016-08, Vol.142 (1), p.12051 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents the results of the research in the degree of the effect of space weather meteorological parameters and factors on the dynamics of soil radon levels and α- and β-radiation flux densities in a seismically passive region. The cross-correlation analysis showed a significant correlation of β-radiation flux density with temperature in summer, and no correlation in winter. A significant relation between α- and β-radiation flux densities and pressure within the intra-annual range was not observed. The investigation of the high-intensity precipitation effect on radon volumetric activity and α- and β-radiation flux densities showed their abnormal increase. The dependence of the anomaly duration on the depth was revealed. The abnormal jumps in α- and β-radiation flux densities data series occur in the snow-melting periods as well. Low-intensity precipitations significantly violate the standard "diurnal variations" of α- and β-radiation soil fluxes and radon volumetric activity. Fourier analysis showed the diurnal (24 hours) and semidiurnal (12 hours) harmonics for the observed radiation values at a depth of 0.5 m. The obtained results can be used for interpretation of the data on the soil radon monitoring in order to predict earthquakes, etc. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/142/1/012051 |