The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups

We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Coates, Tom, Lutz, Wendelin, Shafi, Qaasim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Coates, Tom
Lutz, Wendelin
Shafi, Qaasim
description We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the Abelian/non-Abelian Correspondence in terms of Givental's formalism, which may be of independent interest.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2564692910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564692910</sourcerecordid><originalsourceid>FETCH-proquest_journals_25646929103</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGg9NM6o5bKk16qN0FKmvJJi99qM2u_nwg9odQ6cM2Oe0joQu1CpBfOdq6WUKt6qKNIeu2Uv4PsHNJXBDRKKyXlK1oJrCQvAJ3CDBT9betMg7lXXAfIrDsaOZ-c4lfzQ0Ff0rVuxeWkaB_7EJVufjll6Ea2lTw-uy2vqLY4pV1EcxolKAqn_u37muj5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564692910</pqid></control><display><type>article</type><title>The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups</title><source>Free E- Journals</source><creator>Coates, Tom ; Lutz, Wendelin ; Shafi, Qaasim</creator><creatorcontrib>Coates, Tom ; Lutz, Wendelin ; Shafi, Qaasim</creatorcontrib><description>We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the Abelian/non-Abelian Correspondence in terms of Givental's formalism, which may be of independent interest.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Invariants</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Coates, Tom</creatorcontrib><creatorcontrib>Lutz, Wendelin</creatorcontrib><creatorcontrib>Shafi, Qaasim</creatorcontrib><title>The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups</title><title>arXiv.org</title><description>We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the Abelian/non-Abelian Correspondence in terms of Givental's formalism, which may be of independent interest.</description><subject>Invariants</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGg9NM6o5bKk16qN0FKmvJJi99qM2u_nwg9odQ6cM2Oe0joQu1CpBfOdq6WUKt6qKNIeu2Uv4PsHNJXBDRKKyXlK1oJrCQvAJ3CDBT9betMg7lXXAfIrDsaOZ-c4lfzQ0Ff0rVuxeWkaB_7EJVufjll6Ea2lTw-uy2vqLY4pV1EcxolKAqn_u37muj5I</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Coates, Tom</creator><creator>Lutz, Wendelin</creator><creator>Shafi, Qaasim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210915</creationdate><title>The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups</title><author>Coates, Tom ; Lutz, Wendelin ; Shafi, Qaasim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25646929103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Invariants</topic><toplevel>online_resources</toplevel><creatorcontrib>Coates, Tom</creatorcontrib><creatorcontrib>Lutz, Wendelin</creatorcontrib><creatorcontrib>Shafi, Qaasim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coates, Tom</au><au>Lutz, Wendelin</au><au>Shafi, Qaasim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups</atitle><jtitle>arXiv.org</jtitle><date>2021-09-15</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the Abelian/non-Abelian Correspondence in terms of Givental's formalism, which may be of independent interest.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2564692910
source Free E- Journals
subjects Invariants
title The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Abelian/non-Abelian%20Correspondence%20and%20Gromov-Witten%20Invariants%20of%20Blow-ups&rft.jtitle=arXiv.org&rft.au=Coates,%20Tom&rft.date=2021-09-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2564692910%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564692910&rft_id=info:pmid/&rfr_iscdi=true