The Abelian/non-Abelian Correspondence and Gromov-Witten Invariants of Blow-ups
We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the Abelian/non-Abelian Correspondence in terms of Givental's formalism, which may be of independent interest. |
---|---|
ISSN: | 2331-8422 |