A Gradient Descent Perspective on Sinkhorn
We present a new perspective on the popular Sinkhorn algorithm, showing that it can be seen as a Bregman gradient descent (mirror descent) of a relative entropy (Kullback–Leibler divergence). This viewpoint implies a new sublinear convergence rate with a robust constant.
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-10, Vol.84 (2), p.1843-1855 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new perspective on the popular Sinkhorn algorithm, showing that it can be seen as a Bregman gradient descent (mirror descent) of a relative entropy (Kullback–Leibler divergence). This viewpoint implies a new sublinear convergence rate with a robust constant. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-020-09697-w |