Error Estimates for Optimal Control Problems Involving the Stokes System and Dirac Measures
The aim of this work is to derive a priori error estimates for finite element discretizations of control–constrained optimal control problems that involve the Stokes system and Dirac measures. The first problem entails the minimization of a cost functional that involves point evaluations of the velo...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-10, Vol.84 (2), p.1717-1750 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work is to derive a priori error estimates for finite element discretizations of control–constrained optimal control problems that involve the Stokes system and Dirac measures. The first problem entails the minimization of a cost functional that involves point evaluations of the velocity field that solves the state equations. This leads to an adjoint problem with a linear combination of Dirac measures as a forcing term and whose solution exhibits reduced regularity properties. The second problem involves a control variable that corresponds to the amplitude of forces modeled as point sources. This leads to a solution of the state equations with reduced regularity properties. For each problem, we propose a finite element solution technique and derive a priori error estimates. Finally, we present numerical experiments, in two and three dimensions, that illustrate our theoretical developments. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-020-09693-0 |