Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti–1Al–8V–5Fe alloy and its impact on mechanical properties
The high strength metastable β-Ti alloy, Ti–1Al–8V–5Fe (wt%), also referred to as Ti-185, has been successfully processed using the directed energy deposition (DED) based laser engineered net shaping (LENS) process, obviating the beta fleck problem associated with Fe micro-segregation that has been...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-07, Vol.821, p.141627, Article 141627 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high strength metastable β-Ti alloy, Ti–1Al–8V–5Fe (wt%), also referred to as Ti-185, has been successfully processed using the directed energy deposition (DED) based laser engineered net shaping (LENS) process, obviating the beta fleck problem associated with Fe micro-segregation that has been reported in conventionally processed counterparts. The large solidification range for this alloy resulted in finer scale equiaxed β grains in the as deposited condition for a range of process parameters, unlike the large columnar grains observed in case of AM of other titanium alloys such as Ti–6Al–4V. Furthermore, based on the process parameters, a homogeneous distribution of fine scale ω or α precipitates form within the β grains, which has been rationalized based on quantitative thermo-kinetic modelling of a multi-layered deposition process. Atom probe tomography results indicate early stages of β/ω compositional partitioning, leading to a higher tensile yield strength, close to 1000 MPa, as compared to the solution treated/quenched condition of conventionally processed Ti-185. Homogeneous fine scale α precipitation, with a more pronounced compositional partitioning, resulted in an exceptional yield strength exceeding 1200 MPa in the as-processed condition.
•A commercial β Ti alloy prone to β flecking, Ti-185 has been successfully fabricated via LENS.•A higher laser power (500 W) resulted in ω precipitation within the equiaxed β grains.•A lower laser power (300 W) resulted in α precipitation within the equiaxed β grains.•Influence of laser power on α/ω precipitation, has been justified using multi-physics thermo-kinetic model.•Ability to tune the microstructure via changes in the process parameters. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2021.141627 |