PdPSe: Component‐Fusion‐Based Topology Designer of Two‐Dimensional Semiconductor
Novel 2D semiconductors play an increasingly important role in modern nanoelectronics and optoelectronics. Herein, a novel topology designer based on component fusion is introduced, featured by the submolecular component integration and properties inheritance. As expected, a new air‐stable 2D semico...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-08, Vol.31 (35), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel 2D semiconductors play an increasingly important role in modern nanoelectronics and optoelectronics. Herein, a novel topology designer based on component fusion is introduced, featured by the submolecular component integration and properties inheritance. As expected, a new air‐stable 2D semiconductor PdPSe with a tailored puckered structure is successfully designed and synthesized via this method. Notably, the monolayer of PdPSe is constructed by two sublayers via PP bonds, different from 2D typical transition metal materials with sandwich‐structured monolayers. With the expected orthorhombic symmetry and intralayer puckering, PdPSe displays a strong Raman anisotropy. The field‐effect transistors and photodetectors based on few‐layer PdPSe demonstrate good electronic properties with high carrier mobility of ≈35 cm2 V−1 s−1 and a high on/off ratio of 106, as well as excellent optoelectronic performance, including high photoresponsivity, photogain, and detectivity with values up to 1.06 × 105 A W−1, 2.47 × 107%, and 4.84 × 1010 Jones, respectively. These results make PdPSe a promising air‐stable 2D semiconductor for various electronic and optoelectronic applications. This work suggests that the component‐fusion‐based topology designer is a novel approach to tailor 2D materials with expected structures and interesting properties.
A novel topology designer based on component fusion is introduced, featured with submolecular component integration and properties inheritance. As expected, a new air‐stable 2D semiconductor PdPSe with a tailored puckered structure and excellent electronic and optoelectronic properties are synthesized. This work suggests that this method is a novel approach to tailor materials with expected structures and specific properties. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202102943 |