An H1 convergence of the spectral method for the time-fractional non-linear diffusion equations
The generalized discrete Gronwall inequality is applied to analyze the optimal H 1 error estimate of the time-stepping spectral method for the time-fractional diffusion equations, where the time-fractional derivative is discretized by the second-order fractional backward difference formula or the se...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2021-10, Vol.47 (5), Article 63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generalized discrete Gronwall inequality is applied to analyze the optimal
H
1
error estimate of the time-stepping spectral method for the time-fractional diffusion equations, where the time-fractional derivative is discretized by the second-order fractional backward difference formula or the second-order generalized Newton-Gregory formula. The methodology is extended to analyze the fractional Crank–Nicolson spectral method and the time-stepping spectral method for the multi-term time-fractional differential equations. Numerical simulations are provided to support the theoretical analysis. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-021-09892-5 |