An H1 convergence of the spectral method for the time-fractional non-linear diffusion equations

The generalized discrete Gronwall inequality is applied to analyze the optimal H 1 error estimate of the time-stepping spectral method for the time-fractional diffusion equations, where the time-fractional derivative is discretized by the second-order fractional backward difference formula or the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2021-10, Vol.47 (5), Article 63
Hauptverfasser: Zhang, Hui, Jiang, Xiaoyun, Zeng, Fanhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generalized discrete Gronwall inequality is applied to analyze the optimal H 1 error estimate of the time-stepping spectral method for the time-fractional diffusion equations, where the time-fractional derivative is discretized by the second-order fractional backward difference formula or the second-order generalized Newton-Gregory formula. The methodology is extended to analyze the fractional Crank–Nicolson spectral method and the time-stepping spectral method for the multi-term time-fractional differential equations. Numerical simulations are provided to support the theoretical analysis.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-021-09892-5