Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator

This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2021-10, Vol.36 (10), p.5472-5492
Hauptverfasser: Son, Nguyen N., Van Kien, Cao, Anh, Ho P. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5492
container_issue 10
container_start_page 5472
container_title International journal of intelligent systems
container_volume 36
creator Son, Nguyen N.
Van Kien, Cao
Anh, Ho P. H.
description This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions for selecting mutant coefficient F, crossover coefficient CR, and population size NP, is used to identify the inverse nonlinearity hysteresis structure of the PZT actuator. Second, a feed‐forward control based on the identified model is proposed to compensate for the PZT hysteresis effect. Third, the Lyapunov stability principle is used to design and implement an adaptive law‐based neural sliding mode model plus the feed‐forward compensator to ensure that the whole PZT plant is operated in asymptotical stability. The experiment results demonstrate the proposed AIN controller proves superiority in comparison with other advanced control methods.
doi_str_mv 10.1002/int.22519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564444608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564444608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3329-8e449e15bdcd38c38527fedb45dc5ef5f14fa01adcf698750e8bf9da2d130713</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2kncOCOqgFaqYOnAZjn2WXJJ42A7rcrT4xJWbvmH--5O9yF0T8mMEpLPbRdnec5ofYEmlNQ8o5R-XKIJ4bzMOK2Ka3QTwo4QSquSTdBudQoRPAQbsHL7Hrogo3Udlp3GUss-2gOkThe9a3EjA2gMB9cOZ0j6E-5g8LJNEY_OfwZsnMe9hW8HLajorcJSxUFG52_RlZFtgLu_nKLty_N2uco276_r5dMmU0WR1xmHsqyBskYrXXBVcJZXBnRTMq0YGGZoaSShUiuzqHnFCPDG1FrmmhakosUUPYxre---BghR7Nzgu3RR5GxRploQnqjHkVLeheDBiN7bfXpIUCLOJkUyKX5NJnY-skfbwul_UKzftuPED2K_eMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564444608</pqid></control><display><type>article</type><title>Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Son, Nguyen N. ; Van Kien, Cao ; Anh, Ho P. H.</creator><creatorcontrib>Son, Nguyen N. ; Van Kien, Cao ; Anh, Ho P. H.</creatorcontrib><description>This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions for selecting mutant coefficient F, crossover coefficient CR, and population size NP, is used to identify the inverse nonlinearity hysteresis structure of the PZT actuator. Second, a feed‐forward control based on the identified model is proposed to compensate for the PZT hysteresis effect. Third, the Lyapunov stability principle is used to design and implement an adaptive law‐based neural sliding mode model plus the feed‐forward compensator to ensure that the whole PZT plant is operated in asymptotical stability. The experiment results demonstrate the proposed AIN controller proves superiority in comparison with other advanced control methods.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22519</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Adaptive control ; adaptive inverse neural controller ; back‐propagation ; Compensators ; Control methods ; Control stability ; enhanced differential evolution ; Evolutionary computation ; hybrid adaptive inverse neural control ; Hysteresis ; Intelligent systems ; Lyapunov stability concept ; Mutation ; Neural networks ; Piezoelectric actuators ; Sliding mode control</subject><ispartof>International journal of intelligent systems, 2021-10, Vol.36 (10), p.5472-5492</ispartof><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3329-8e449e15bdcd38c38527fedb45dc5ef5f14fa01adcf698750e8bf9da2d130713</citedby><cites>FETCH-LOGICAL-c3329-8e449e15bdcd38c38527fedb45dc5ef5f14fa01adcf698750e8bf9da2d130713</cites><orcidid>0000-0001-7353-8205 ; 0000-0002-9796-9357 ; 0000-0003-3380-1317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22519$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22519$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Son, Nguyen N.</creatorcontrib><creatorcontrib>Van Kien, Cao</creatorcontrib><creatorcontrib>Anh, Ho P. H.</creatorcontrib><title>Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator</title><title>International journal of intelligent systems</title><description>This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions for selecting mutant coefficient F, crossover coefficient CR, and population size NP, is used to identify the inverse nonlinearity hysteresis structure of the PZT actuator. Second, a feed‐forward control based on the identified model is proposed to compensate for the PZT hysteresis effect. Third, the Lyapunov stability principle is used to design and implement an adaptive law‐based neural sliding mode model plus the feed‐forward compensator to ensure that the whole PZT plant is operated in asymptotical stability. The experiment results demonstrate the proposed AIN controller proves superiority in comparison with other advanced control methods.</description><subject>Adaptive control</subject><subject>adaptive inverse neural controller</subject><subject>back‐propagation</subject><subject>Compensators</subject><subject>Control methods</subject><subject>Control stability</subject><subject>enhanced differential evolution</subject><subject>Evolutionary computation</subject><subject>hybrid adaptive inverse neural control</subject><subject>Hysteresis</subject><subject>Intelligent systems</subject><subject>Lyapunov stability concept</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Piezoelectric actuators</subject><subject>Sliding mode control</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2kncOCOqgFaqYOnAZjn2WXJJ42A7rcrT4xJWbvmH--5O9yF0T8mMEpLPbRdnec5ofYEmlNQ8o5R-XKIJ4bzMOK2Ka3QTwo4QSquSTdBudQoRPAQbsHL7Hrogo3Udlp3GUss-2gOkThe9a3EjA2gMB9cOZ0j6E-5g8LJNEY_OfwZsnMe9hW8HLajorcJSxUFG52_RlZFtgLu_nKLty_N2uco276_r5dMmU0WR1xmHsqyBskYrXXBVcJZXBnRTMq0YGGZoaSShUiuzqHnFCPDG1FrmmhakosUUPYxre---BghR7Nzgu3RR5GxRploQnqjHkVLeheDBiN7bfXpIUCLOJkUyKX5NJnY-skfbwul_UKzftuPED2K_eMw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Son, Nguyen N.</creator><creator>Van Kien, Cao</creator><creator>Anh, Ho P. H.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7353-8205</orcidid><orcidid>https://orcid.org/0000-0002-9796-9357</orcidid><orcidid>https://orcid.org/0000-0003-3380-1317</orcidid></search><sort><creationdate>202110</creationdate><title>Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator</title><author>Son, Nguyen N. ; Van Kien, Cao ; Anh, Ho P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3329-8e449e15bdcd38c38527fedb45dc5ef5f14fa01adcf698750e8bf9da2d130713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>adaptive inverse neural controller</topic><topic>back‐propagation</topic><topic>Compensators</topic><topic>Control methods</topic><topic>Control stability</topic><topic>enhanced differential evolution</topic><topic>Evolutionary computation</topic><topic>hybrid adaptive inverse neural control</topic><topic>Hysteresis</topic><topic>Intelligent systems</topic><topic>Lyapunov stability concept</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Piezoelectric actuators</topic><topic>Sliding mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Nguyen N.</creatorcontrib><creatorcontrib>Van Kien, Cao</creatorcontrib><creatorcontrib>Anh, Ho P. H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Nguyen N.</au><au>Van Kien, Cao</au><au>Anh, Ho P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator</atitle><jtitle>International journal of intelligent systems</jtitle><date>2021-10</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>5472</spage><epage>5492</epage><pages>5472-5492</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions for selecting mutant coefficient F, crossover coefficient CR, and population size NP, is used to identify the inverse nonlinearity hysteresis structure of the PZT actuator. Second, a feed‐forward control based on the identified model is proposed to compensate for the PZT hysteresis effect. Third, the Lyapunov stability principle is used to design and implement an adaptive law‐based neural sliding mode model plus the feed‐forward compensator to ensure that the whole PZT plant is operated in asymptotical stability. The experiment results demonstrate the proposed AIN controller proves superiority in comparison with other advanced control methods.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22519</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7353-8205</orcidid><orcidid>https://orcid.org/0000-0002-9796-9357</orcidid><orcidid>https://orcid.org/0000-0003-3380-1317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2021-10, Vol.36 (10), p.5472-5492
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2564444608
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive control
adaptive inverse neural controller
back‐propagation
Compensators
Control methods
Control stability
enhanced differential evolution
Evolutionary computation
hybrid adaptive inverse neural control
Hysteresis
Intelligent systems
Lyapunov stability concept
Mutation
Neural networks
Piezoelectric actuators
Sliding mode control
title Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis%20compensation%20and%20adaptive%20control%20based%20evolutionary%20neural%20networks%20for%20piezoelectric%20actuator&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Son,%20Nguyen%20N.&rft.date=2021-10&rft.volume=36&rft.issue=10&rft.spage=5472&rft.epage=5492&rft.pages=5472-5492&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22519&rft_dat=%3Cproquest_cross%3E2564444608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564444608&rft_id=info:pmid/&rfr_iscdi=true