Hysteresis compensation and adaptive control based evolutionary neural networks for piezoelectric actuator

This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2021-10, Vol.36 (10), p.5472-5492
Hauptverfasser: Son, Nguyen N., Van Kien, Cao, Anh, Ho P. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This manuscript introduces a new adaptive inverse neural (AIN) control method applied to precisely track the piezoelectric (PZT) actuator displacement. First, a 3‐layer neural network optimized by the enhanced differential evolution technique which modifies a mutation scheme and provides suggestions for selecting mutant coefficient F, crossover coefficient CR, and population size NP, is used to identify the inverse nonlinearity hysteresis structure of the PZT actuator. Second, a feed‐forward control based on the identified model is proposed to compensate for the PZT hysteresis effect. Third, the Lyapunov stability principle is used to design and implement an adaptive law‐based neural sliding mode model plus the feed‐forward compensator to ensure that the whole PZT plant is operated in asymptotical stability. The experiment results demonstrate the proposed AIN controller proves superiority in comparison with other advanced control methods.
ISSN:0884-8173
1098-111X
DOI:10.1002/int.22519