Effect of multidirectional forging and equal channel angular pressing on ultrafine grain formation in a Cu- Cr-Zr alloy

The microstructure evolution was investigated in a Cu-0.3%Cr-0.5%Zr alloy subjected to large plastic deformation at temperature of 400 °C. Two methods of large plastic deformation, i.e., equal channel angular pressing (ECAP) and multidirectional forging (MDF) were used. The large plastic deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2014-08, Vol.63 (1), p.12097
Hauptverfasser: Shakhova, I, Belyakov, A, Kaibyshev, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructure evolution was investigated in a Cu-0.3%Cr-0.5%Zr alloy subjected to large plastic deformation at temperature of 400 °C. Two methods of large plastic deformation, i.e., equal channel angular pressing (ECAP) and multidirectional forging (MDF) were used. The large plastic deformations resulted in the development of new ultrafine grains. The formation of new ultrafine grains occurred as a result of continuous reaction, i.e., progressive increase in the misorientations of deformation subboundaries. The faster kinetics of microstructure evolution was observed during MDF as compared to ECAP. The MDF to a total strain of 4 resulted in the formation of uniform ultrafine grained structure, while ECAP to the same strain led to the heterogeneous microstructure consisting of new ultrafine grains and coarse remnants of original grains. Corresponding area fractions of ultrafine grains comprised 0.23 and 0.59 in the samples subjected to ECAP and MDF, respectively.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/63/1/012097