Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds

For a compact smooth manifold ( M , g 0 ) with a boundary, we study the conformal rigidity and non-rigidity of the scalar curvature in the conformal class. It is known that the sign of the first eigenvalue for a linearized operator of the scalar curvature by a conformal change determines the rigidit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.9745-9767
Hauptverfasser: Byeon, Jaeyoung, Jin, Sangdon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a compact smooth manifold ( M , g 0 ) with a boundary, we study the conformal rigidity and non-rigidity of the scalar curvature in the conformal class. It is known that the sign of the first eigenvalue for a linearized operator of the scalar curvature by a conformal change determines the rigidity/non-rigidity of the scalar curvature by conformal changes when the scalar curvature R g 0 is positive. In this paper, we show the sign condition of R g 0 is not necessary, and a reversed rigidity of the scalar curvature in the conformal class does not hold if there exists a point x 0 ∈ M with R g 0 ( x 0 ) > 0 .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-021-00626-z