Conformal Rigidity and Non-rigidity of the Scalar Curvature on Riemannian Manifolds
For a compact smooth manifold ( M , g 0 ) with a boundary, we study the conformal rigidity and non-rigidity of the scalar curvature in the conformal class. It is known that the sign of the first eigenvalue for a linearized operator of the scalar curvature by a conformal change determines the rigidit...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.9745-9767 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a compact smooth manifold
(
M
,
g
0
)
with a boundary, we study the conformal rigidity and non-rigidity of the scalar curvature in the conformal class. It is known that the sign of the first eigenvalue for a linearized operator of the scalar curvature by a conformal change determines the rigidity/non-rigidity of the scalar curvature by conformal changes when the scalar curvature
R
g
0
is positive. In this paper, we show the sign condition of
R
g
0
is not necessary, and a reversed rigidity of the scalar curvature in the conformal class does not hold if there exists a point
x
0
∈
M
with
R
g
0
(
x
0
)
>
0
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00626-z |