On the Spectral Value of Semigroups of Holomorphic Functions
Let ( ϕ t ) t ≥ 0 be a semigroup of holomorphic self-maps of the unit disk D with Denjoy–Wolff point τ = 1 . The angular derivative is ϕ t ′ ( 1 ) = e - λ t , where λ ≥ 0 is the spectral value of ( ϕ t ) . If λ > 0 the semigroup is hyperbolic, otherwise it is parabolic. Suppose K is a compact non...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.10473-10497 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
ϕ
t
)
t
≥
0
be a semigroup of holomorphic self-maps of the unit disk
D
with Denjoy–Wolff point
τ
=
1
. The angular derivative is
ϕ
t
′
(
1
)
=
e
-
λ
t
, where
λ
≥
0
is the spectral value of
(
ϕ
t
)
. If
λ
>
0
the semigroup is hyperbolic, otherwise it is parabolic. Suppose
K
is a compact non-polar subset of
D
. We specify the type of the semigroup by examining the asymptotic behavior of
ϕ
t
(
K
)
. We provide a representation of the spectral value of the semigroup with the use of several potential theoretic quantities, e.g., harmonic measure, Green function, extremal length, condenser capacity. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00653-w |