On the Spectral Value of Semigroups of Holomorphic Functions

Let ( ϕ t ) t ≥ 0 be a semigroup of holomorphic self-maps of the unit disk D with Denjoy–Wolff point τ = 1 . The angular derivative is ϕ t ′ ( 1 ) = e - λ t , where λ ≥ 0 is the spectral value of ( ϕ t ) . If λ > 0 the semigroup is hyperbolic, otherwise it is parabolic. Suppose K is a compact non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.10473-10497
1. Verfasser: Kourou, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( ϕ t ) t ≥ 0 be a semigroup of holomorphic self-maps of the unit disk D with Denjoy–Wolff point τ = 1 . The angular derivative is ϕ t ′ ( 1 ) = e - λ t , where λ ≥ 0 is the spectral value of ( ϕ t ) . If λ > 0 the semigroup is hyperbolic, otherwise it is parabolic. Suppose K is a compact non-polar subset of D . We specify the type of the semigroup by examining the asymptotic behavior of ϕ t ( K ) . We provide a representation of the spectral value of the semigroup with the use of several potential theoretic quantities, e.g., harmonic measure, Green function, extremal length, condenser capacity.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-021-00653-w