A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem

We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.9639-9676
Hauptverfasser: Chakrabarti, Debraj, Harrington, Phillip S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9676
container_issue 10
container_start_page 9639
container_title The Journal of Geometric Analysis
container_volume 31
creator Chakrabarti, Debraj
Harrington, Phillip S.
description We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree ( p ,  q ) vanishes if 1 ≤ q ≤ n - 2 and is Hausdorff and infinite-dimensional if q = n - 1 , so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the L 2 Sobolev space W 1 on any pseudoconvex domain with C 1 , 1 boundary. We also generalize our results to annuli between domains which are weakly q -convex in the sense of Ho for appropriate values of q .
doi_str_mv 10.1007/s12220-021-00623-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2564151014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707338868</galeid><sourcerecordid>A707338868</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1812-ca32bce8d117291d046a14fb26611537936de94ceb5a2a29788eda77db8987b3</originalsourceid><addsrcrecordid>eNpFULFOwzAQtRBIlMIPMEVidvHZie2MUQW0oogOHdgiJ3ZaV2kcnHToysTfsPEB8Cd8CYYgoRvu3um9d6eH0CWQCRAirjuglBJMKGBCOGWYHqERJEkaIH06DjNJCOYp5aforOu2hMScxWKElln04LStrNFh8N4c8L3bNHj2-e53qtHGR3Ntmt72hyjAKGvb2paqt67pot5F_cZEX68vH2946V1Rm905OqlU3ZmLvz5Gq9ub1XSGF49382m2wGuQQHGpGC1KIzWAoCno8I-CuCoo5wAJEynj2qRxaYpEUUVTIaXRSghdyFSKgo3R1WDbeve8N12fb93eN-FiThMeQwIE4sCaDKy1qk1um8r1XpWhtNnZ0jWmsmGfCSIYk5LLIGCDoGu9bdbG_9sCyX-izoeo8xB1_ht1Ttk3Yd9x-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564151014</pqid></control><display><type>article</type><title>A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakrabarti, Debraj ; Harrington, Phillip S.</creator><creatorcontrib>Chakrabarti, Debraj ; Harrington, Phillip S.</creatorcontrib><description>We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree ( p ,  q ) vanishes if 1 ≤ q ≤ n - 2 and is Hausdorff and infinite-dimensional if q = n - 1 , so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the L 2 Sobolev space W 1 on any pseudoconvex domain with C 1 , 1 boundary. We also generalize our results to annuli between domains which are weakly q -convex in the sense of Ho for appropriate values of q .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-021-00623-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Annuli ; Convex and Discrete Geometry ; Differential Geometry ; Domains ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Homology ; Mathematics ; Mathematics and Statistics ; Sobolev space</subject><ispartof>The Journal of Geometric Analysis, 2021-10, Vol.31 (10), p.9639-9676</ispartof><rights>Mathematica Josephina, Inc. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-g1812-ca32bce8d117291d046a14fb26611537936de94ceb5a2a29788eda77db8987b3</cites><orcidid>0000-0002-0473-8542 ; 0000-0002-1398-0162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-021-00623-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-021-00623-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chakrabarti, Debraj</creatorcontrib><creatorcontrib>Harrington, Phillip S.</creatorcontrib><title>A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree ( p ,  q ) vanishes if 1 ≤ q ≤ n - 2 and is Hausdorff and infinite-dimensional if q = n - 1 , so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the L 2 Sobolev space W 1 on any pseudoconvex domain with C 1 , 1 boundary. We also generalize our results to annuli between domains which are weakly q -convex in the sense of Ho for appropriate values of q .</description><subject>Abstract Harmonic Analysis</subject><subject>Annuli</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Domains</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sobolev space</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFULFOwzAQtRBIlMIPMEVidvHZie2MUQW0oogOHdgiJ3ZaV2kcnHToysTfsPEB8Cd8CYYgoRvu3um9d6eH0CWQCRAirjuglBJMKGBCOGWYHqERJEkaIH06DjNJCOYp5aforOu2hMScxWKElln04LStrNFh8N4c8L3bNHj2-e53qtHGR3Ntmt72hyjAKGvb2paqt67pot5F_cZEX68vH2946V1Rm905OqlU3ZmLvz5Gq9ub1XSGF49382m2wGuQQHGpGC1KIzWAoCno8I-CuCoo5wAJEynj2qRxaYpEUUVTIaXRSghdyFSKgo3R1WDbeve8N12fb93eN-FiThMeQwIE4sCaDKy1qk1um8r1XpWhtNnZ0jWmsmGfCSIYk5LLIGCDoGu9bdbG_9sCyX-izoeo8xB1_ht1Ttk3Yd9x-w</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chakrabarti, Debraj</creator><creator>Harrington, Phillip S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-0473-8542</orcidid><orcidid>https://orcid.org/0000-0002-1398-0162</orcidid></search><sort><creationdate>20211001</creationdate><title>A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem</title><author>Chakrabarti, Debraj ; Harrington, Phillip S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1812-ca32bce8d117291d046a14fb26611537936de94ceb5a2a29788eda77db8987b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Annuli</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Domains</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Debraj</creatorcontrib><creatorcontrib>Harrington, Phillip S.</creatorcontrib><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Debraj</au><au>Harrington, Phillip S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>10</issue><spage>9639</spage><epage>9676</epage><pages>9639-9676</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree ( p ,  q ) vanishes if 1 ≤ q ≤ n - 2 and is Hausdorff and infinite-dimensional if q = n - 1 , so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the L 2 Sobolev space W 1 on any pseudoconvex domain with C 1 , 1 boundary. We also generalize our results to annuli between domains which are weakly q -convex in the sense of Ho for appropriate values of q .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-021-00623-2</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-0473-8542</orcidid><orcidid>https://orcid.org/0000-0002-1398-0162</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021-10, Vol.31 (10), p.9639-9676
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2564151014
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Annuli
Convex and Discrete Geometry
Differential Geometry
Domains
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Homology
Mathematics
Mathematics and Statistics
Sobolev space
title A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20Morrey-Kohn-H%C3%B6rmander%20Identity%20and%20Applications%20to%20the%20%E2%88%82%C2%AF-Problem&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Chakrabarti,%20Debraj&rft.date=2021-10-01&rft.volume=31&rft.issue=10&rft.spage=9639&rft.epage=9676&rft.pages=9639-9676&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-021-00623-2&rft_dat=%3Cgale_proqu%3EA707338868%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564151014&rft_id=info:pmid/&rft_galeid=A707338868&rfr_iscdi=true