A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem

We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.9639-9676
Hauptverfasser: Chakrabarti, Debraj, Harrington, Phillip S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree ( p ,  q ) vanishes if 1 ≤ q ≤ n - 2 and is Hausdorff and infinite-dimensional if q = n - 1 , so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the L 2 Sobolev space W 1 on any pseudoconvex domain with C 1 , 1 boundary. We also generalize our results to annuli between domains which are weakly q -convex in the sense of Ho for appropriate values of q .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-021-00623-2