A Modified Morrey-Kohn-Hörmander Identity and Applications to the ∂¯-Problem
We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in C n , where the inner domain has C 1 , 1 boundary, we show that the L 2 Dolbeault cohomology group in bidegree...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-10, Vol.31 (10), p.9639-9676 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in
C
n
, where the inner domain has
C
1
,
1
boundary, we show that the
L
2
Dolbeault cohomology group in bidegree (
p
,
q
) vanishes if
1
≤
q
≤
n
-
2
and is Hausdorff and infinite-dimensional if
q
=
n
-
1
, so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the
L
2
Sobolev space
W
1
on any pseudoconvex domain with
C
1
,
1
boundary. We also generalize our results to annuli between domains which are weakly
q
-convex in the sense of Ho for appropriate values of
q
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00623-2 |