Vanishing-concentration-compactness alternative for critical Sobolev embedding with a general integrand in R2
A maximizing problem associated with the Moser–Pohozaev–Trudinger–Yudovich type inequality proved in Ruf (J Funct Anal 219:340–367, 2005) states: d ( α ) : = sup u ∈ H 1 ( R 2 ) , ‖ u ‖ H 1 = 1 ∫ R 2 ( e α | u | 2 - 1 ) < ∞ for 0 < α ≤ 4 π . Do Ó–Sani–Tarsi (Commun Contemp Math 20:1650036, 201...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021, Vol.60 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A maximizing problem associated with the Moser–Pohozaev–Trudinger–Yudovich type inequality proved in Ruf (J Funct Anal 219:340–367, 2005) states:
d
(
α
)
:
=
sup
u
∈
H
1
(
R
2
)
,
‖
u
‖
H
1
=
1
∫
R
2
(
e
α
|
u
|
2
-
1
)
<
∞
for
0
<
α
≤
4
π
. Do Ó–Sani–Tarsi (Commun Contemp Math 20:1650036, 2018) established the vanishing-concentration-compactness (VCC) alternative with respect to any maximizing sequence for
d
(
α
)
. In this paper, we consider a maximizing problem with a general integrand:
d
Φ
(
α
)
:
=
sup
u
∈
H
1
(
R
2
)
,
‖
u
‖
H
1
=
1
∫
R
2
Φ
α
(
|
u
|
)
,
where
Φ
∈
C
(
[
0
,
∞
)
)
with
α
>
0
and
Φ
α
(
s
)
:
=
Φ
(
α
s
)
for
s
≥
0
. Our aim is to extract sufficient conditions for
Φ
under which the (VCC) alternative still holds for
d
Φ
(
α
)
. As a result, assuming
lim
s
→
∞
Φ
(
s
)
Φ
(
(
1
+
ε
)
s
)
=
0
with any small
ε
>
0
as an essential condition, we prove the (VCC) alternative for
d
Φ
(
α
)
which extends not only
d
(
α
)
but other various examples untreated so far. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-021-02076-5 |