Prediction of limit strains during non-proportional load paths with a change in loading direction

Many different models have been published to predict failure after non-proportional load paths. Most of those models are phenomenological and heuristical models. They require a profound knowledge about the material. Examples are the enhanced Modified Maximum Force Criterion (eMMFC), the Polar Effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-11, Vol.967 (1), p.12069
Hauptverfasser: Volk, W., Gruber, M., Norz, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many different models have been published to predict failure after non-proportional load paths. Most of those models are phenomenological and heuristical models. They require a profound knowledge about the material. Examples are the enhanced Modified Maximum Force Criterion (eMMFC), the Polar Effective Plastic Strain-model (PEPS) or the Generalized Forming Limit Concept (GFLC). In addition to the load path, the loading direction has a significant influence on the formability of sheet metals. The mentioned models currently neglect this influence. By extending the GFLC-model by the parameter of loading direction, this influence is taken into account. By analyzing an acceptable number of bi-linear experiments, it is possible to calibrate the proposed model for a micro-alloyed steel HC340LA. Therewith an arbitrary load path with a change in loading direction can be evaluated. The results of this contribution show the effectiveness of this approach by different experiments.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/967/1/012069