(2^\infty\)-Selmer Rank Parities via the Prym Construction
We derive a local formula for the parity of the \(2^{\infty}\)-Selmer rank of Jacobians of curves of genus \(2\) or \(3\) with a \(K\)-rational \(2\)-torsion point. We give an explicit example to show how this local formula gives rank parity predictions against which the \(2\)-parity conjecture may...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a local formula for the parity of the \(2^{\infty}\)-Selmer rank of Jacobians of curves of genus \(2\) or \(3\) with a \(K\)-rational \(2\)-torsion point. We give an explicit example to show how this local formula gives rank parity predictions against which the \(2\)-parity conjecture may be tested. Our results yield applications to the parity conjecture for semistable curves of genus \(3\). |
---|---|
ISSN: | 2331-8422 |