A three-dimensional numerical analysis of moisture flow in wood and of the wood’s hygro-mechanical and visco-elastic behaviour

A three-dimensional numerical model was employed in simulating nonlinear transient moisture flow in wood and the wood’s hygro-mechanical and visco-elastic behaviour under such conditions. The model was developed using the finite element software Abaqus FEA ® , while taking account of the fibre orien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wood science and technology 2021-09, Vol.55 (5), p.1269-1304
Hauptverfasser: Florisson, Sara, Vessby, Johan, Ormarsson, Sigurdur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A three-dimensional numerical model was employed in simulating nonlinear transient moisture flow in wood and the wood’s hygro-mechanical and visco-elastic behaviour under such conditions. The model was developed using the finite element software Abaqus FEA ® , while taking account of the fibre orientation of the wood. The purpose of the study was to assess the ability of the model to simulate the response of wood beams to bending and to the climate of northern Europe. Four-point bending tests of small and clear wood specimens exposed to a constant temperature and to systematic changes in relative humidity were conducted to calibrate the numerical model. A validation of the model was then performed on the basis of a four-point bending test of solid timber beams subjected to natural climatic conditions but sheltered from the direct effects of rain, wind and sunlight. The three-dimensional character of the model enabled a full analysis of the effects of changes in moisture content and in fibre orientation on stress developments in the wood. The results obtained showed a clear distinction between the effects of moisture on the stress developments caused by mechanical loads and the stress developments caused solely by changes in climate. The changes in moisture that occurred were found to have the strongest effect on the stress state that developed in areas in which the tangential direction of the material was aligned with the exchange surface of the beams. Such areas were found to be exposed to high-tension stress during drying and to stress reversal brought about by the uneven drying and shrinkage differences that developed between the outer surface and the inner sections of the beams.
ISSN:0043-7719
1432-5225
1432-5225
DOI:10.1007/s00226-021-01291-9