Multilayered nanocrystalline CrN/TiAlN/MoS2 tribological thin film coatings: preparation and characterization

Nanocrystalline multilayer thin film coatings, composed of nanometer-scale thick CrN, TiAlN and MoS2 tri-layer systems, were prepared by reactive co-sputtering processes. The self-lubricated multilayer coating structures were deposited by one-fold oscillating movement of substrates in front of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Papp, S, Kelemen, A, Jakab-Farkas, L, Vida-Simiti, I, Biró, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocrystalline multilayer thin film coatings, composed of nanometer-scale thick CrN, TiAlN and MoS2 tri-layer systems, were prepared by reactive co-sputtering processes. The self-lubricated multilayer coating structures were deposited by one-fold oscillating movement of substrates in front of the sputter sources. Three independently operated direct current (dc) excited unbalanced magnetrons (UM) with rectangular cathodes of TiAl alloy (50/50%), pure chromium and MoS2 were used as sputter sources. The reactive sputtering process was performed in a mixture of Ar-N2 atmosphere. Hardened high-speed-steel (HSS) and thin oxide covered Si (100) wafers were used as substrates for tribological- and microstructure investigations, respectively. According to results of the chemical composition evaluated by Auger-electron spectroscopy (AES) and microstructure investigation by cross sectional transmission electron microscopy (XTEM), the CrN, TiAlN and the MoS2 phases form practically continuous layers with large gradient transition of composition. The as-deposited CrN/ (Al,Ti)N/MoS2 coatings have shown good friction behaviour, tested at room temperature in dry sliding condition with a ball-on-disk tribometer.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/47/1/012016