Carbon footprint of automotive ignition coil

In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2015-07, Vol.87 (1), p.12016
Hauptverfasser: Chang, Huey-Ling, Chen, Chih-Ming, Sun, Chin-Huang, Lin, Hung-Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissions during the life cycle of a product to lessen its impact on environment is an important topic in the industrial society. Furthermore, it is also of great significance to cut down the required energy so as to lower its production costs during the manufacturing process nowadays. This study presents the carbon footprint of an automotive ignition coil and its partial materials are defined to explore their carbon emissions and environmental impact. The model IPCC GWP100a calculates potential global greenhouse effect by converting them into CO2 equivalents. In this way, the overall carbon footprint of an ignition coil can be explored. By using IPCC GWP100a, the results display that the shell has the most carbon emissions. The results can help the industry reduce the carbon emissions of an ignition coil product.
ISSN:1757-8981
1757-899X
1757-899X
DOI:10.1088/1757-899X/87/1/012016