Two-dimensional spatial distribution modeling of sprinkler irrigation
The more uniform the water application, the higher the DEpa, the lower the loss through deep percolation and the smaller the water deficit in the fraction of the irrigated land area that received an irrigation depth lower than dn (Keller & Bliesner, 2000). [...]high irrigation uniformity is an e...
Gespeichert in:
Veröffentlicht in: | Revista Ceres 2021-07, Vol.68 (4), p.257-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The more uniform the water application, the higher the DEpa, the lower the loss through deep percolation and the smaller the water deficit in the fraction of the irrigated land area that received an irrigation depth lower than dn (Keller & Bliesner, 2000). [...]high irrigation uniformity is an essential factor for obtaining high irrigation efficiency and, consequently, greater crop response to irrigation (Darko et al., 2017; ElWahed et al., 2015; Mantovani et al., 1995). In this procedure, a high number of catch cans is necessary, which increases as the spacing between catch cans decreases, the test area increases or sprinkler heads with longer jet reach are tested. [...]the usual field tests for sprinkler irrigation uniformity is labor and timeconsuming (Zhang et al., 2018), which has motivated the development of alternative methods (Maroufpoor et al., 2019). Twenty-nine tests were carried out using five different models of sprinkler heads: * ASP1 - Rain Bird 14070H, nozzle 106 13114 NOZ, SBN - 3V (2 tests for each pressure of300; 350 and 400 kPa). * ASP2 - Rain Bird 14070H, nozzle SBN - 3, RNG - 30/40, 10584216 (2 tests for each pressure of 300 and 400 kPa and 1 test with the pressure of 350 kPa). * ASP3 - Rain Bird, model Pop-Up 7005, nozzle number 8 (2 tests for each pressure of 300, 350 and 400 kPa). * ASP4 - Sime, model Ibis mini-gun full circle, nozzles 5 and 6 mm (2 tests for each pressure of 350, 400 and 450 kPa). * ASP5 - Fabrimar (Plastic) A232, nozzles 4 and 3 mm (2 tests for each pressure of 300, 350 and 400 kPa). The first can was located at 2.12 m from the sprinkler head (Figure 1). [...]the total number of catch cans (24) used in this alternative methodology corresponds to 16.7% of what would be necessary in the usual full grid methodology. |
---|---|
ISSN: | 0034-737X 2177-3491 |
DOI: | 10.1590/0034-737X202168040002 |