Factorization problems in complex reflection groups

We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2021-08, Vol.73 (4), p.899-946
Hauptverfasser: Lewis, Joel Brewster, Morales, Alejandro H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.
ISSN:0008-414X
1496-4279
DOI:10.4153/S0008414X2000022X