Emotion Recognition Based on Type-2 Recurrent Wavelet Fuzzy Brain Emotion Learning Network Model
Emotion recognition plays a crucial role in human-robot emotional interaction applications, and the brain emotional learning model is one of several emotion recognition methods, but the learning rules of original brain emotional learning model play poor adaptation and do not work very well. In fact,...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emotion recognition plays a crucial role in human-robot emotional interaction applications, and the brain emotional learning model is one of several emotion recognition methods, but the learning rules of original brain emotional learning model play poor adaptation and do not work very well. In fact, existing facial emotion recognition methods do not have high accuracy and are not sufficiently practical in real-time applications. In order to solve this problem, this paper introduces an optimal model, which merges interval type-2 recurrent wavelet fuzzy system and brain emotional learning network for emotion recognition. The proposed model takes advantage of type-2 recurrent wavelet fuzzy theory and brain emotional neural network. There are no rules initially, and then the structure and parameters of model are tuning online simultaneously by the gradient approach and Lyapunov function. The system input data streams are directly imported into the neural network through a type-2 recurrent wavelet fuzzy inference system; then, the results are subsequently piped into sensory and emotional channels which jointly produce the final outputs of the network. The proposed model could reduce the uncertainty in terms of vagueness by using type-2 recurrent wavelet fuzzy theory and removing noise samples. Finally, the superior performance of the proposed method is demonstrated by its comparison with some emotion recognition methods on five emotion databases. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/9991531 |