Artificial Intelligence- (AI-) Enabled Internet of Things (IoT) for Secure Big Data Processing in Multihoming Networks
The automated techniques enabled with Artificial Neural Networks (ANN), Internet of Things (IoT), and cloud-based services affect the real-time analysis and processing of information in a variety of applications. In addition, multihoming is a type of network that combines various types of networks i...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The automated techniques enabled with Artificial Neural Networks (ANN), Internet of Things (IoT), and cloud-based services affect the real-time analysis and processing of information in a variety of applications. In addition, multihoming is a type of network that combines various types of networks into a single environment while managing a huge amount of data. Nowadays, the big data processing and monitoring in multihoming networks provide less attention while reducing the security risk and efficiency during processing or monitoring the information. The use of AI-based systems in multihoming big data with IoT- and AI-integrated systems may benefit in various aspects. Although multihoming security issues and their analysis have been well studied by various scientists and researchers; however, not much attention is paid towards big data security processing in multihoming especially using automated techniques and systems. The aim of this paper is to propose an IoT-based artificial network to process and compute big data processing by ensuring a secure communication multihoming network using the Bayesian Rule (BR) and Levenberg-Marquardt (LM) algorithms. Further, the efficiency and effect on multihoming information processing using an AI-assisted mechanism are experimented over various parameters such as classification accuracy, classification time, specificity, sensitivity, ROC, and F-measure. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2021/5754322 |