The Cantor–Schröder–Bernstein Theorem for ∞-groupoids
We show that the Cantor–Schröder–Bernstein Theorem for homotopy types, or ∞ -groupoids, holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky’s univalent founda...
Gespeichert in:
Veröffentlicht in: | Journal of homotopy and related structures 2021, Vol.16 (3), p.363-366 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the Cantor–Schröder–Bernstein Theorem for homotopy types, or
∞
-groupoids, holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky’s univalent foundations (HoTT/UF), and requires classical logic. It follows that the theorem holds in any boolean
∞
-topos. |
---|---|
ISSN: | 2193-8407 1512-2891 |
DOI: | 10.1007/s40062-021-00284-6 |