The Cantor–Schröder–Bernstein Theorem for ∞-groupoids

We show that the Cantor–Schröder–Bernstein Theorem for homotopy types, or ∞ -groupoids, holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky’s univalent founda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of homotopy and related structures 2021, Vol.16 (3), p.363-366
1. Verfasser: Escardó, Martín Hötzel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Cantor–Schröder–Bernstein Theorem for homotopy types, or ∞ -groupoids, holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky’s univalent foundations (HoTT/UF), and requires classical logic. It follows that the theorem holds in any boolean ∞ -topos.
ISSN:2193-8407
1512-2891
DOI:10.1007/s40062-021-00284-6