Detection and characterization of lung cancer using cell-free DNA fragmentomes

Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-08, Vol.12 (1), p.5060-14, Article 5060
Hauptverfasser: Mathios, Dimitrios, Johansen, Jakob Sidenius, Cristiano, Stephen, Medina, Jamie E., Phallen, Jillian, Larsen, Klaus R., Bruhm, Daniel C., Niknafs, Noushin, Ferreira, Leonardo, Adleff, Vilmos, Chiao, Jia Yuee, Leal, Alessandro, Noe, Michael, White, James R., Arun, Adith S., Hruban, Carolyn, Annapragada, Akshaya V., Jensen, Sarah Østrup, Ørntoft, Mai-Britt Worm, Madsen, Anders Husted, Carvalho, Beatriz, de Wit, Meike, Carey, Jacob, Dracopoli, Nicholas C., Maddala, Tara, Fang, Kenneth C., Hartman, Anne-Renee, Forde, Patrick M., Anagnostou, Valsamo, Brahmer, Julie R., Fijneman, Remond J. A., Nielsen, Hans Jørgen, Meijer, Gerrit A., Andersen, Claus Lindbjerg, Mellemgaard, Anders, Bojesen, Stig E., Scharpf, Robert B., Velculescu, Victor E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer. DNA from tumour cells can be detected in the blood of cancer patients. Here, the authors show that cell free DNA fragmentation patterns can identify lung cancer patients and when this information is further interrogated it can be used to predict lung cancer histological subtype.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24994-w